Maximalj-Simplices in the Reald-Dimensional Unit Cube

نویسندگان

  • Michael G. Neubauer
  • William Watkins
  • Joel Zeitlin
چکیده

For each positive even integer j there is an infinite arithmetic sequence of dimensions d for which we construct a j -simplex of maximum volume in the d-dimensional unit cube. For fixed d, all of these maximal j -simplices have the same Gram matrix, which is a multiple of I+J. For j even, a new upper bound for the volume of a j -simplex in the d-dimensional unit cube is given. 1997 Academic Press

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lower bounds for the simplexity of the n-cube

In this paper we prove a new asymptotic lower bound for theminimal number of simplices in simplicial dissections of n-dimensional cubes. In particular we show that the number of simplices in dissections of n-cubes without additional vertices is at least (n + 1) n−1 2 . © 2012 Elsevier B.V. All rights reserved.

متن کامل

LARGEST j-SIMPLICES IN d-CUBES: SOME RELATIVES OF THE HADAMARD MAXIMUM DETERMINANT PROBLEM

This paper studies the computationally diicult problem of nding a largest j-dimensional simplex in a given d-dimensional cube. The case in which j = d is of special interest, for it is equivalent to the Hadamard maximum determinant problem; it has been solved for innnitely many values of d but not for d = 14. (The subcase in which j = d 3 (mod 4) subsumes the famous problem on the existence of ...

متن کامل

Lower Bounds for Simplicial Covers and Triangulations of Cubes

We show that the size of a minimal simplicial cover of a polytope P is a lower bound for the size of a minimal triangulation of P , including ones with extra vertices. We then use this fact to study minimal triangulations of cubes, and we improve lower bounds for covers and triangulations in dimensions 4 through at least 12 (and possibly more dimensions as well). Important ingredients are an an...

متن کامل

Sixteen space-filling curves and traversals for d-dimensional cubes and simplices

This article describes sixteen different ways to traverse d-dimensional space recursively in a way that is well-defined for any number of dimensions. Each of these traversals has distinct properties that may be beneficial for certain applications. Some of the traversals are novel, some have been known in principle but had not been described adequately for any number of dimensions, some of the t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comb. Theory, Ser. A

دوره 80  شماره 

صفحات  -

تاریخ انتشار 1997